Padagetaran pegas massa benda mempengaruhi periode, jika massa benda semakin besar maka waktu untuk mencapai 10 getaran akan semakin besar juga. Sedangkan konstanta akan lebih kecil jika nilai T semakin besar. Nilai T semakin kecil jika waktu untuk mencapai 10 getaran kecil karena rumusnya adalah t dibagi n . Diposting oleh SKY di 10.12.
Rabu, 11 Desember 2019 Edit Laporan Percobaan Gaya Pegas 1. Alat dan Bahan a. Karet gelang b. Penggaris c. Beban 20 gr d. Statif 2. Cara kerja a. Ambil seutas karet gelang, gantungkan salah satu ujungnya pada statif b. Gantungkan pula beban pada ujung karet c. Tariklah beban kebawah, kemudian lepaskan. Amati apa yang terjadi 3. Teori Dasar Gaya pegas adalah gaya yang timbul karena pegas timbul karena ada sifat elastik. Sifat elastik pada benda apabila diubah bentuknyakemudian dilepas, benda tersebut akan kembali kebentuk semula. 4. Hasil pengamatan 5. Kesimpulan Berdasarkan percobaan semakin besar gaya yang bekerja pada pegas semakin besar juga pertambahan ini di pengaruhi besarnya masa benda yang mempengaruhi gaya tarik. 6. Jawab Karena pengaruh dari berat benda dan plastik dari karet Referensi Rumanta, M. 2019. Praktikum IPA di SD. Jakarta PT. Prata Sejati Mandiri. Semoga postingan Laporan Praktikum Gaya Pegas Praktikum IPA di SD ini bisa memberi manfaat. Amiin YRA. Penulis NUR WAHYUNINGTIAS S1 PGSD UT-POKJAR Jombang
Langkahpercobaan 1. Pasang 1 beban pada pegas 2. Tarik beban ke bawah sejauh ± 2 cm. Dan siapkan stopwatch di tangan. 3. Lepaskan bebanbersamaan dengan menekan stopwatch. 4. Hitung sampai 10 getaran dan tetapt pada saat itu matikan stopwatch, catalah hasil pengamatan. 5. Hitung waktu 1 getaran (periode T) 6.
Telah dilakukan percobaan getaran teredam dengan tujuan untuk mengetahui jenis redaman pada percobaan ini, mengetahui nilai amplitudo mula-mula dalam percobaan ini, mengetahui besar konstanta redaman pada percobaan ini, dan mengetahui pengaruh θ terhadap simpangan. Percobaan ini dilakukan dengan cara peralatan dirangkai dengan variasi ketinggian bidang miring yang diatur terhadap lantai. Bola besi digelindingkan dari atas bidang miring ke bagian dasar dimana terdapat sebuah pegas. Waktu beserta simpangan hingga simpangan yang kelima dicatat dengan pengulangan 8 kali. Langkah yang sama dilakukan untuk variasi ketinggian lainnya. Pengolahan data, perhitungan, dan analisis dilakukan hingga diperoleh hasil dari percobaan. Dari percobaan yang telah dilakukan, secara fisis telah terjadi fenomena getaran teredam yang mengakibatkan osilasi dari bola besi akan memiliki amplitudo yang semakin menurun dan akhirnya berhenti...
\n percobaan getaran benda oleh pegas
GayaPegas. oleh Mukhammad Efendi, S.Pd. Penjelasan lengkap mengenai gaya pegas mulai dari pengertian, manfaat, rumus, dan contoh soal terbaru agar dapat membuat Anda lebih paham. Setiap hari kita tentu sering menemukan seseorang melakukan berbagai kegiatan yang di dalamnya terdapat gaya. Mungkin kita tidak menyadari akan hal tersebut.
PertanyaanSebuah pegas dengan konstanta gaya 10 N/mmelakukan getaran harmonis, massa benda pada pegas 200 gram, apabila simpangan maksimum dari getaran tersebut 10 cm, tentukanlah kecepatan dari getaran saat simpangan benda 5 cm!Sebuah pegas dengan konstanta gaya 10 N/m melakukan getaran harmonis, massa benda pada pegas 200 gram, apabila simpangan maksimum dari getaran tersebut 10 cm, tentukanlah kecepatan dari getaran saat simpangan benda 5 cm!Jawabankecepatan getaran pegas saat simpangan 5cm adalah 0,61m/ getaran pegas saat simpangan 5cm adalah 0,61 m/ Ditanya v 2 ... ? Penyelesaian Keadaan 1 merupakan keadaan pegas berada dititik simpangan maksimum. Pada titik ini, kecepatan benda bernilai nol. Berdasarkan hukum kekekalan energi mekanik, berlaku E k 1 ​ + E p 1 ​ 0 + 2 1 ​ ⋅ k ⋅ x 1 2 ​ 0 + 2 1 ​ ⋅ 10 ⋅ 0 , 1 2 0 , 05 v 2 ​ v 2 ​ ​ = = = = = = ​ E k 2 ​ + E p 2 ​ 2 1 ​ ⋅ m ⋅ v 2 2 ​ + 2 1 ​ ⋅ k ⋅ x 2 2 ​ 2 1 ​ ⋅ 0 , 2 ⋅ v 2 2 ​ + 2 1 ​ ⋅ 10 ⋅ 0 , 05 2 0 , 1 ⋅ v 2 2 ​ + 0 , 0125 0 , 1 0 , 05 − 0 , 0125 ​ ​ 0 , 61 m / s ​ Jadi kecepatan getaran pegas saat simpangan 5cm adalah 0,61m/ Ditanya v2 ... ? Penyelesaian Keadaan 1 merupakan keadaan pegas berada dititik simpangan maksimum. Pada titik ini, kecepatan benda bernilai nol. Berdasarkan hukum kekekalan energi mekanik, berlaku Jadi kecepatan getaran pegas saat simpangan 5cm adalah 0,61 m/s. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!168Yuk, beri rating untuk berterima kasih pada penjawab soal!
MetodologiPercobaan 4.1 Alat dan Bahan Pegas berfungsi sebagai benda yang akan diukur periode, frekuensi, dan konstanta pegasnya (2 buah). Stopwatch digital berfungsi untuk menghitung waktu gerak osilasi pegas (1 buah). Neraca berfungsi untuk mengukur massa beban (1 buah). Mistar berfungsi untuk mengukur panjang pegas (1 buah). 100% found this document useful 3 votes10K views11 pagesCopyright© Attribution Non-Commercial BY-NCAvailable FormatsDOC, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?100% found this document useful 3 votes10K views11 pagesPercobaan I Getaran PegasJump to Page You are on page 1of 11 You're Reading a Free Preview Pages 6 to 10 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime. Langkahkerja Percobaan 2 : 1. Seperti lagkah percobaan 1, langkah 1, 2, 3, dan 4 2. Menyimpangkan beban kebawah 2 cm lalu lepaskan 3. Mengukur waktu dalam 10 x getaran dengan stopwatch catat hasilnya pada tabel 4. Mengulangi langkah 2 dan 3 dengan beban yang sesuai percobaan 1 BAB IV HASIL DAN PEMBAHASAN A. Hasil Percobaan 1 Percobaan 2

LAPORAN PRAKTIKUM FISIKA “ GETARAN PEGAS GETARAN HARMONIS ” Nama Eka Nur Rahmawati No Absen 12 Kelas XI IPA 2 Sma negeri 1 jetis bantul yogyakarta 2012 / 2013 KATA PENGANTAR Assalamu’alaikum Pertama - tama marilah kita memanjatkan puji syukur kehadirat Allah SWT karena atas nikmat karunia-Nya, laporan yang berjudul tentang “ getaran pegas getaran harmonis “ ini dapat terselesaikan dengan sebaik – baiknya. Tugas ini dibuat dan diusahakan agar tidak terjadi kesalahan di dalamnya. Akan tetapi, sebagai manusia yang serba kekurangan pastilah ada berbagai kesalahan yang terjadi baik secara sengaja maupun tidak sengaja. Untuk itu, atas segala kekurangan dan kesalahan yang terjadi, maka sebagai penyusun, saya memohon maaf serta harapan supaya para pembaca memberikan kritikan dan sarannya agar dihari mendatang kesalahan ini tidak terulang lagi. Lebih lanjut saya ucapkan terima kasih banyak kepada semua pihak yang telah memberikan dalam penyelesaian tugas ini. Akhir kata, saya ucapkan sekian dan terima kasih. Wassalamu’alaikum Penyusun II DAFTAR ISI Halaman Judul .............................................................................................................. I Kata Pengantar ............................................................................................................. II Daftar Isi ........................................................................................................................ III Latar Belakang .............................................................................................................. 1 Percobaan - 1 Tujuan ........................................................................................................................... 1 Dasar Teori ................................................................................................................... 2 Waktu ............................................................................................................................ 3 Percobaan – 2 Tujuan ............................................................................................................................ 4 Alat dan Baahan ............................................................................................................ 5 Data pengamatan .......................................................................................................... 6 Kesimpulan dan Saran .................................................................................................. 7 Daftar Pustaka............................................................................................................... 8 Lampiran ....................................................................................................................... 9 III A. Latar Belakang Getaran adalah suatu gerak bolak-balik disekitar kesetimbangan. Kesetimbangan disini maksudnya adalah keadaan dimana suatu benda berada pada posisi diam jika tidak ada gaya yang berkerja pada benda tersebut. Getaran mempunyai amplitude jarak simpangan terjauh dengan titik tengah yang sama. Perkembangan ilmu pengetahuan dan tekhnologi sudah semakin maju dan berkembang dengan pesat sehingga menimbulkan persaingan yang ketat. Secara otomatis ada tuntutan agar selalu berkreatifitas dan terus mengikuti perkembangan tersebut, dengan ilmu pengetahuan dan tekhnologi yang memadahi, manusia dapat mengembangan potensi-potensi disekelilingnya. Karena dirasa penting bagi kita untuk mengetahui dan menguasainya, dilakukanlah praktikum untuk memperdalam materi fisika tentang getaran pegas selanjutnya, untuk melengkapi praktikum tersebut disusunlah laporan praktikum. Isi dari laporan ini tak lain adalah getaran pegas, hasil-hasil pengamatan dan pembahasan hal-hal yang telah terjadi dalam praktikum. A. Percobaan – 1 I. Tujuan Menentukan konstanta pegas II. Alat dan bahan 1. Statif 2. Mistar 3. Pegas 4. Stop watch III. Dasar Teori Sifat elastis adalah sifat pegas yang kembali ke keadaan semula setelah gaya yang bekerja padanya dihilangkan. Sifat-sifat yang dimiliki oleh gaya pegas yaitu a. Gaya pegas makin besar bila pertambahan panjang pegas makin besar b. Arah gaya pegas berlawanan dengan arah gaya yang diberikan. Hubungan antara gaya pegas dan perubahan panjang pegas dinyatakan sebagai hukum Hooke F= -k Δx Tanda negatif menunjukkan bahwa arah gaya pegas selalu berlawanan dengan arah perubahan panjang pegas berbanding lurus dengan pertambahan panjang pegas dan berlawanan arah dengan 1 gaya yang diberikan. Pegas yang digantung beban ada sebuah pegas yang memiliki panjang L0. Pegas tersebut di gantung secara vertikal dimana pada ujung bawahnya dikaitkan beban bermassa m. Akibat digantungkan beban, maka pegas mengalami perubahan panjang ΔL. Perubahan panjang pegas dapat ditentukan dari syarat besar gaya pegas sama dengan besar gaya gravitasi. k ΔL = m g atau ΔL = m g / k Dengan pertambahan panjang ini maka panjang pegas menjadi L0 + ΔL. Jika beban diam, maka posisinya merupakan posisi setimbang. Posisi setimbang ini adalah posisi setimbang baru. Dengan demikian, posisi setimbang adalah posisi saat panjang pegas sama dengan L0 + ΔL. Jika benda sedikit disimpangkan dan dibiarkan berosilasi, maka benda akan berosilasi di sekitar posisi setimbang tersebut. Saat menggunakan titik setimbang baru tersebut, maka gaya gravitasi dianggap tidak ada karena sudah dikompensasi oleh pertambahan panjang pegas. Selanjutnya, benda berosilasi di sekitar posisi setimbang baru yang sama persis dengan osilasi pada bidang datar. Ket F = gaya yang dilakukan pegas N Δx = perubahan panjang pegas m k = konstanta pegas N/m m = massa kg ΔL = pertambahan panjang cm g = percepatan gravitasi 9,81 m/s2 Hukum Hooke pertambahan panjang suatu pegas berbanding lurus dengan gaya yang bekerja pada pegas tersebut, dapat dinyatakan dalam persamaan F = k y F = gaya newton k = konstanta pegas N. y = pertambahan panjang m 2 IV. Waktu Hari Selasa Tanggal 13 November 2012 Pukul WIB Tempat Laboratorium SMA N 1 Jetis V. Langkah kerja 1. Menyusun alat – alat yang digunakan untuk praktikum. 2. Mengukur panjang pegas, kemudian menyatat hasilnya pada tabel. 3. Menggantungkan beban massa pada pegas. 4. Mengulangi langkah 3, dan 4 untuk beban yang berbeda. VI. Data pengamatan No Massa beban kg Panjang pegas l m Pertambahan panjang y meter Nilai konstanta pegas k N. 1. Tanpa beban 15,4 × 0 0 2. 50. 16,7 × 1,3 × 38,4 3. 100. 18,0 × 2,6 × 38,4 4. 150. 19,3 × 3,9 × 38,4 Pertanyaan 1. Hitunglah nilai k pada analisa data tersebut ! 2. Buatlah grafik hubungan antara massa beban dengan pertambahan panjang ! VII. Perhitungan 1. No. 2 No. 3 k = k = = = = = = = 38,4 = = 38,4 3 No. 4 k = = = = = 38,4 2. B. Percoabaan – 2 I. Tujuan Menentukan percepatan gravitasi bumi berdasarkan getaran pegas 4 II. Alat dan Bahan 1 Statif 2 Pegas 3 Mistar 4 Beban 5 Stopwatch III. Dasar Teori Suatu pegas yang digantungkan secara vertikal dan diberi beban kemudian beban disimpangkan ke bawah dan dilepaskan maka beban akan bergetar dengan periode yang dapat dituliskan T = 2Ï€ T = periode s = pertambahan panjang m g = gravitasi m. IV. Waktu Hari Selasa Tanggal 13 November 2012 Pukul WIB Tempat Laboratorium SMA N 1 Jetis V. Langkah Kerja 1 Seperti langkah percobaan – 1, langkah 1, 2, 3, dan 4 2 Menyimpangkan beban ke bawah 2 cm lalu dilepaskan. 3 Mengukur waktu dalam 10 × getaran dengan menggunakan stopwatch, kemudian menyatat hasilnya pada tabel. 4 Mengulangi langkah 2 dan 3 dengan beban yang sesuai percobaan – 1. 5 VI. Data Pengamatan No. Massa beban kg Waktu 10xgetaran t sekon Periode getaran T sekon Nilai gravitasi gm. 1 50. 3,1 0,31 5,33 2 100. 4,1 0,41 6,099 3 150. 5,1 0,51 5,9 Pertanyaan Hitunglah nilai gravitasi dari percobaan ini ! Berapa nilai rata – ratanya ? VII. Perhitungan No. 1 No. 2 = = = = = = = = = 5,33 = 6, 099 No . 4 = = = = = 5, 9 Nilai g rata – ratanya = = = 5,8 6 VIII. Ralat Dalam melakukan percobaan tidak 100 % benar, maka perlu diadakan ralat perhitungan sebagai berikut Kesalahan terjadi disebabkan karena 1 Kesalahan dalam alat ukur, yaitu alat ukur yang digumakan tidak sempurna 2 Kesalahan individu, yaitu kurang teliti dalam membaca atau mengamati alat ukur tersebut. 3 Kesalahan yang diakibatkan padaa saat pelaksaan kurang sempurna, sehingg, misalnya menyebabkan nilai gravitasi tidak mendekati 9 – 10. KESIMPULAN Setelah melakukan sebuah praktikum mengenai getaran pegas kita dapat menyimpulkan beberapa hal yang berkaitan dengan praktikum tersebut 1. Nilai gravitasi normalnya berkisar diantara 9 – 10 2. Apabila nilai gravitasi kurang dari normal maka dapat disebabkan oleh beberapa faktor a. Angin dan kondisi pegas menjadi masalah utama yang membuat nilai gravitasi jauh dari normal. b. Perbandingan panjang suatu pegas berbanding lurus dengan gaya yang bekerja pada pegas tersebut 3. Beban yang digunakan berpengaruh terhadap nilai konstante pegas 4. Untuk mendapatkan nilai gravitasi memperlukan waktu yang dibutuhkan untuk melakukan sebuah getaran. Saran Ketika praktikum getaran pegas pengukuran hendaknya dilakukan dengan teliti, sehingga dapat memperoleh hasil yang tepat. Selain itu ketika mengukur pertambahan panjang, ketepatan dalam melihat satuan ukur pada mistar ukur. Serta, ketika menghitung pantulan pegas diperlukan ketepan dalam menekan tombol stopwatch. 7 DAFTAR PUSTAKA 2. Jakarta Yudistira untuk kelas XI. JakartaPhibeta. 8

2 , frekuensi sudut menyatakan seberapa sering getaran itu terjadi. 2. Untuk pegas berlaku = √ 3. Waktu terpendek yang diperlukan oleh benda yang melakukan getaran untuk Kembali ke posisi semula disebut periode getaran T = 2π√ @2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 18 Modul FISIKA Kelas X KD 3.11 4. Untuk LANDASAN TEORI GETARAN PEGAS DAN AYUNAN BANDUL GETARAN PEGAS Getaran adalah gerak bolak – bolik secara berkala melalui suatu titik keseimbangan. Pada umumnya setiap benda dapat melakukan getaran. Suatu benda dikatakan bergetar bila benda itu bergerak bolak bolik secara berkala melalui titik keseimbangan. Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal. Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertical. Pada pegas yang kita letakan horisontal mendatar, posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar ditarik atau ditekan. Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang. Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas F0 = -kx0 yang arahnya ke atas dan gaya berat w = mg yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis Kita akan tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak. Jika kita meregangkan pegas menarik pegas ke bawah sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang perhatikan gambar c di bawah. Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum v maks. Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang x = 0. Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Lagi-lagi alasannya klasik Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang lihat gambar di bawah. Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Pada benda berada pada titik kesetimbangan x = 0, EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP. Benda bermassa m digantungkan pada ujung pegas, pegas bertambah panjang. Dalam keadaan seimbang, gaya berat w sama dengan gaya pegas F, resultan gaya sama dengan nol, beban diam. Bila beban disimpangkan dan dilepas maka pegas akan bergetar. Getaran pada pegas memiliki frekuensi alamiah sendiri. Waktu yang diperlukan oleh benda untuk bergerak dari titik A kembali lagi ke titik A lagi disebut satu perioda dimana besarnya tergantung pada massa beban dan konstanta gaya pegas. AYUNAN BANDUL Bandul - Gerak periode merupakan suatu gerak yang berulang pada selang waktu yang tetap. Contohnya gerak ayunan pada bandul. Dari satu massa yang brgantung pada sutas tali, kebanyakan gerak tidaklah betul-betul periodik karena pengaruh gaya gesekan yang membuang energi gerak. Benda berayun lama akan berhenti bergetar. ini merupakan periodik teredam. Gerak dengan persamaan berupa fungsi sinus merupakan gerak harmonik sederhana. Periode getaran yaitu T. Waktu yang diperlukan untuk satu getaran frekwensi gerak f. jumlah getaran dalam satu satuan waktu T = 1/f posisi saat dimana resultan gaya pada benda sama dengan nol adalah posisi setimbang, kedua benda mencapai titik nol setimbang selalu pada saat yang sama.  Getaran adalah gerak bolak-balik atau gerak periodik disekitar titik tertentu secara periodik.      Gerak Periodik adalah suatu getaran atau gerakan yang dilakukan benda secara bolak-balik melalui jalan tertentu yang kembali lagi ke tiap kedudukan dan kecepatan setelah selang waktu tertentu. Simpangan adalah jarak antara kedudukan benda yang bergetar pada suatu saat sampai kembali pada kedudukan seimbangnya. Amplitudo adalah simpangan maksimum yang dilakukan pada peristiwa getaran. Perioda adalah waktu yang diperlukan untuk melakukan satu kali getaran penuh. Frekuensi adalah banyaknya getaran penuh yang dapat dilakukan dalam waktu satu detik. Ayunan Sederhana Ayunan sederhana atau disebut bandul melakukan gerakan bolak balik sepanjang busur AB. Waktu yang diperlukan oleh benda untuk bergerak dari titik A ke titik A lagi disebut Satu Perioda. Sedangkan banyaknya getaran atau gerak bolak-balik yang dapat dilakukan dalam waktu satu detik disebut Frekuensi. Frekuensi yang dihasilkan bandul disebut Frekuensi Alamiah. Frekuensi Alamiah adalah frekuensi yang ditimbulkan dari ayunan tanpa adanya pengaruh luar. Gb. Gaya pd Ayunan Sederhana Untuk Mengetahui besarnya gaya yang mempengaruhi gerak ayunan dapat digunakan persamaan berikut ini Dimana F Gaya N m Massa benda Kg g Percepatan gravitasi ms-2 θ Sudut simpangan …o l Panjang tali m x Simpangan getar m Simpangan getar A dapat diketahui besarnya melalui persamaan sebagai berikut Dimana A Simpangan getar Amplitudo m θ Sudut deviasi …o l Panjang tali m Sedangkan perioda getaran pada ayunan sederhana dapat diketahui melalui persamaan sebagai berikut Dimana T Perioda getaran S phi 3,14 22/7 l Panjang tali m g Percepatan gravitasi ms-2 Frekuensi getaran dapat dicari dengan menggunakan persamaan sebagai berikut Dimana f Frekuensi getaran Hz phi 3,14 22/7 g Percepatan gravitasi ms-2 l Panjang tali m T Periode getaran s Contoh-contoh ayunan bandul dalam kehidupan sehari-hari Gambar Ayunan Bandul .gif Gambar Ayunan Bandul vector. Gambar Ayunan Gambar Bedug di masjid. Percobaangetaran benda pada pegas. Hasil pengamatan mengukur getaran benda pada pegas. Tabel 6.1. Percobaan ke. Waktu 20 getaran (sekon) Periode (sekon) Frekwensi (hertz) 1. 12,88. 0,644. 1,56. 2. Periode dan frekuensi bandul dipengaruhi oleh panjang tali. Diposkan oleh Admin di 7:39 PM. Email This BlogThis! Share to Twitter Share to OLEH KELOMPOK III. Agus Ryanto. Muh. Zaenul. Hariani Ismail. Nirmala Sabir. Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. · Melalui percobaan I diketahui perpanjangan pegas saat diberikan beban sebesar kg adalah 1 cm atau 1 m, Pernyataanini dikemukakan oleh Robert Hooke, oleh karena itu, pernyataan di atas dikenal sebagai Hukum Hooke. Untuk menyelidiki berlakunya Hukum Hooke, kita dapat melakukan percobaan pada pegas. Selisih panjang pegasketika diberi gaya ditarik dengan panjang awal desebut pertambahan panjang ( Δ l) atau ( Δ x).
Padakedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan. Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya .
a Simpangan awal pada pegas akan menjadi amplitudo dari getaran pegas tersebut, jadi A = 2 cm. b. Karena untuk 10 getaran diperlukan waktu 12 s maka periodenya adalah 12 1,2 10 T s s c. 11 0,833 1,2 f Hz Hz T d. & I UDG 2 1,67 Untuk sekedar menguatkan pemahaman Anda tentang konsep getaran, coba Anda lakukan percobaan sederhana sendiri di rumah.
Prosedurpercobaan. a. Menggantungkan pegas pada statip dan mengukur panjangnya (X 0) b. Menggantungi pegas dengan beban (m) dan mengukur panjang pegas (X) c. Mencatat beban pada table dan menghitung selisih ( X) = X-X 0. d. Menarik beban ke bawah lurus, kemudian melepaskan sehingga pegas bergetar selama 10 getaran sempurna, mencatat waktunya Bentukbayangan benda B oleh lensa L denagn menggeser letak layar T. 3. maka pegas mangalami getaran selaras yang dapat ditentukan periode getarannya (T). Ini merupakan kesalahan oleh kondisi percobaan yang tidak sama dengan kondisi ketika alat dikalibrasikan. Misalnya penimbangan benda di Malang dengan menggunakan timbangan pegas yang Pernyataanini dikemukakan oleh Robert Hooke, oleh karena itu, pernyataan di atas dikenal sebagai Hukum Hooke.Untuk menyelidiki berlakunya hukum hooke, kita bisa melakukan percobaan pada pegas. Selisih panjang pegas ketika diberi gaya tarik dengan panjang awalnya disebut pertambahan panjang ( l). 1 Energi Kinetik (E k) Energi yang dimiliki oleh benda yang bergerak, bila massa benda m dan kecepatan benda v maka energi kinetik benda tersebut adalah E k = 1 2 m v 2 Kecepatan yang dimiliki oleh getaran harmonik adalah A cos ( t) v ZZ. Sehingga energi kinetik getaran harmonik adalah sebagai berikut. k 1 E m. [A. . cos ( t)]² 2 ZZ atau 1 m.

BUKUSISWA GETARAN DAN GELOMBANG 6 Pada percobaan 1, ketika kamu memberi simpangan pada bandul pada posisi A, kemudian melepaskannya, bola akan bergerak menuju posisi B, C, B, kemudian kembali ke posisi A. Gerak bandul dari posisi A - B - C - B - A disebut satu getaran. Kamu dapat melihat bahwa simpangan tidak pernah melebihi titik A

4 Merencanakan dan melaksanakan percobaan getaran harmonis pada ayunan bandul dan getaran pegas 1. Mem peragakan konsep getaran harmonik sederhana pada ayunan bandul atau getaran pegas 2. Mendiskusikan hasil belajar 3. Membuat analisa skema antara gaya dan gerak getaran 4. Melaksanakan percobaan getaran harmonis pada ayunan dan getaran pegas

44 Merencanakan dan melaksanakan percobaan getaran harmonis pada ayunan bandul dan getaran pegas . C. INDIKATOR PENCAPAIAN KOMPETENSI. Frekuensi adalah banyaknya getaran yang dilakukan oleh benda selama satu detik, yang dimaksudkan dengan getaran di sini adalah getaran lengkap.

Osilasimerupakan gerak suatu benda yang terjadi secara berulang-ulang melalui titik kesetimbangan. Osilasi terbagi menjadi dua yaitu osilasi harmoni k dan osilasi teredam. Osilasi harmoni k adalah gerak getaran benda yang terj a di secara terus menerus dan tidak terdapat fa k tor hambatan. Sedangkan osilasi teredam merupakan gerak getaran benda yang di pengaruhi oleh gaya penghambat atau fldOFw.